Designing for Human-Centered AI in the U.S.Child-Welfare System


Workshop paper


Devansh Saxena, Shion Guha

Cite

Cite

APA   Click to copy
Saxena, D., & Guha, S. Designing for Human-Centered AI in the U.S.Child-Welfare System.


Chicago/Turabian   Click to copy
Saxena, Devansh, and Shion Guha. Designing for Human-Centered AI in the U.S.Child-Welfare System, n.d.


MLA   Click to copy
Saxena, Devansh, and Shion Guha. Designing for Human-Centered AI in the U.S.Child-Welfare System.


BibTeX   Click to copy

@techreport{devansh-a,
  title = {Designing for Human-Centered AI in the U.S.Child-Welfare System},
  author = {Saxena, Devansh and Guha, Shion}
}

Abstract
Child-Welfare System (CWS) in many states in the United States has come under escalating public and media scrutiny because of the potential damage done to children who are removed from the care of their parents. CWS has increasingly turned towards artificial intelligence (AI) as a way of standardizing decisions and demonstrating that these decisions are unbiased and evidence-based. Moreover, CWS in almost every state is underfunded and AI systems, from the perspective of policymakers, offer a potential means to reduce costs. Our research focuses on the collaborative work of child-welfare teams that participate in meetings mediated by policy, practice, and algorithms. In the following paragraphs, we first offer some background context in regards to the child-welfare system in the state of Wisconsin. Next, we establish a need for human-centered AI, and finally, we discuss how strategies proposed by human-centered algorithm design (HCAD) can help inform the development of algorithms in CWS.

PDF

Share

Tools
Translate to